Progression in Mental and Written
Calculation Methods

Addition

Pupils should be able to use addition flexibly and in context. They should understand that addition is the inverse of subtraction.

End of year expectations

Year 1
Write mathematical statements using the + and = symbols. Children must experience combining two, and then more than two groups of objects using counting on and the language of addition e.g. add, plus, altogether. Solve one-step problems; calculating the answer using concrete objects, pictorial representations and missing number problems.

Year 2

Partition numbers in different ways e.g. $2+2+2+3,4+5$ or 26 as $20+6$ or $10+16$.
Use concrete objects and pictorial representations to add numbers in context e.g. measures or money. Add more than two numbers together.
Solve reasoning problems involving addition by using materials, arrays, repeated addition and mental methods.
Understand that addition is commutative (it can be done in any order)

Concrete and visual representations

Number Fluency

Know number bonds to 10 and 20 and relate these to subtraction facts.
Add numbers up to 20 together (including 0).
Count forwards, to and across 100, beginning with 0 or 1 or from any given number. Compare quantities to say how many more e.g. what is 3 more than 6?.
Count in tens and ones; and multiples of 2,5 and 10 . Find one more than a given number.
Increasingly fluent recalling number bonds to 10 and 20 and relate these to subtraction facts. Use knowledge of number to derive and use number facts between 0 and 100.
Add numbers together mentally including: a 2-digit number and a 1-digit number, two 2-digit numbers, a 2-digit number and a 10 , and three 1-digit numbers. Independently record addition in columns using suitable place value. Use mathematical language fluently e.g. sum of and difference. Count from 0 in multiples of 2,5, 10,20 and 100.

Pupils should be able to use addition flexibly and in context. They should understand that addition is the inverse of subtraction.

End of year expectations

Year 3

Solve two-step addition problems in different contexts, including missing number questions. Add more than two numbers with different amounts of digits. Partition numbers up to 1000 in different ways e.g. $200+60+4=$ $200+40+24=264$. Add numbers with up to threedigits using the column method. Estimate the answer to calculations and use the inverse to check answers.

Year 4
Solve two-step addition problems in different contexts, including missing number questions. Add numbers with up to two decimal places; including within the context of money.
Add more than two numbers with different amounts of digits including a whole number and a decimal or two decimal numbers. Add numbers with up to fourdigits using the column method.
\qquad

Concrete and visual representations

Number Fluency

Count in ones, tens and hundreds maintaining fluency through regular practise.
Count from 0 in multiples of 4 , 8,50 and 100 .
Find 10 or 100 more than a given number.
Mentally add HTO + ones, HTO + tens and HTO + hundreds.
Perform mental calculations with two-digit numbers when the answer exceeds 100.

Count from 0 in multiples of 6, $7,9,25$ and 100.
Find 1000 more than a given number.
Perform mental calculations with two-digit numbers when the answer exceeds 100.

Independently decide on a method of choice depending on the nature of the given numbers presented in a number sentence or within a problem.

Pupils should be able to use addition flexibly and in context. They should

 understand that addition is the inverse of subtraction.End of year expectations

Year 5

Solve multi-step problems involving addition. Children should be able to select and justify their methods. Perform mental calculations with increasingly large numbers. Add numbers with more than fourdigits.
Using a formal written method, e.g. columnar addition, solve calculations. Add numbers with up to three decimal places.
Children should be able to add more than two numbers including those with decimals and/or a different number of digits.

Year 6

Solve multi-step problems involving addition. Children should be able to select and justify their methods. Add numbers with more than fourdigits.
Perform mental calculations with increasingly complex steps. Using a formal written method, e.g. columnar addition, solve calculations. Add numbers with up to three decimal places.
Children should be able to add more than two numbers including those with decimals and/or a different number of digits

Concrete and visual representations

Large pizzas cost $£ 8.50$ each.
Small pizzas cost $£ 6.75$ each.
Five children together buy one large pizza and three small pizzas.
They share the cost equally.
How much does each child pay?

Number Fluency
Count forwards and backwards in steps of 10 from any given number up to $1,000,000$.
Count forwards in positive and negative whole numbers through zero.
Use knowledge of the inverse to complete addition and subtraction problems effectively.
Perform mental calculations involving increasingly high numbers by drawing on known number facts e.g. $12,462+2,300=14,762$.

Use rounding to estimate and check answers effectively.

Count forwards and backwards in steps of 10 and 100 from any given number up to $1,000,000$.
Recognise and consider place value between millionths and millions. Perform mental calculations involving increasingly high numbers and increasingly complex steps. These may include mixed operational steps.
Round numbers to a specific degree of accuracy.
Count forwards in positive and negative whole numbers through zero.

Subtraction

Pupils should be able to use subtraction flexibly and in context. They should understand that subtraction is the inverse of addition.

End of year expectations

Year 1
Write mathematical statements using the - and $=$ symbols.
Understand subtraction as taking away.
Children must experience comparing quantities of objects by identifying how many less or how many more e.g this group has two less, this group has two more
Solve one-step problems; calculating the answer using concrete objects, pictorial representations and missing number problems.

Year 2

Partition numbers in different ways e.g. 10-2-2-3, 9-5 or 32 as $40-$ 8 or 34-2.
Use concrete objects and pictorial representations to subtract numbers in context e.g. measures or money. Subtract two or more numbers from a given number.
Solve reasoning problems involving subtraction by using materials and mental methods.
Understand subtraction as taking away and finding the difference. Understand that subtraction is not commutative; it cannot be done in any order.

Concrete and visual representations

 | II | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 21222324252627282930 $\begin{array}{llllllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\ 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$

 \begin{tabular}{l|lllllllll}
41 \& 42 \& 43 \& 44 \& 45 \& 46 \& 47 \& 48 \& 49 \& 50

\hline 51 \& 52 \& 53 \& 54 \& 55 \& 56 \& 57 \& 58 \& 59 \& 60

\hline 6 \& 62 \& 63 \& 64 \& 65 \& 66 \& 67 \& 68 \& 69 \& 70

\hline 1 \& 72 \& 7 \& \&

\hline 61 \& 62 \& 63 \& 64 \& 65 \& 66 \& 67 \& 68 \& 69

\hline 71

\hline 71 \& 72 \& 73 \& 74 \& 75 \& 76 \& 77 \& 78 \& 79

\hline

\hline 71 \& 72 \& 73 \& 74 \& 75 \& 76 \& 77 \& 78 \& 79 \& 80

\hline 81 \& 82 \& 83 \& 84 \& 85 \& 86 \& 87 \& 88 \& 89 \& 90

\hline

\hline 81 \& 82 \& 83 \& 84 \& 85 \& 86 \& 87 \& 88 \& 89

\hline 91 \& 92 \& 93 \& 94 \& 95 \& 96 \& 97 \& 98 \& 99

\hline
\end{tabular}

Number Fluency

Know number bonds to 10 and 20 and relate these to subtraction facts.
Subtract numbers up to 20 (including 0).
Count backwards from 100 or 10 or from any given number
Switch count between tens and ones e.g. 23, 22, 21, 20, 10, 0. Compare quantities to say how many less e.g. what is 3 less than 6?
Count back in tens and ones; and multiples of 2,5 and 10 .
Find one and ten less than a given number.
Become increasingly fluent when subtracting numbers to 10 and 20 and relate these to number bond facts. Use knowledge of number to derive and use number facts between 0 and 100.

Subtract numbers mentally including: a 2 -digit number and a 1-digit number, two 2-digit numbers, a 2 digit number and a 10 , and three 1digit numbers.
Independently record subtraction in columns using suitable place value. Recognise that subtraction is the inverse of addition; use this knowledg to check questions and solve missing number problems.
Count back in multiples of $2,5,10$, 20 and 100.

Pupils should be able to use subtraction flexibly and in context. They should understand that subtraction is the inverse of addition.

End of year expectations

Year 3

Solve two-step subtraction problems in different contexts, including missing number questions.
Using a formal written method, subtract more than two numbers with different amounts of digits. Subtract numbers with up to threedigits using the column method. Apply, develop and secure understanding of place value and record calculations in columns. Estimate the answer to calculations and use the inverse to check answers

Year 4

Solve two-step subtraction problems in different contexts, including missing number questions. Subtract numbers with up to two decimal places; including within the context of money.
Subtract more than two numbers with different amounts of digits including a whole number and a decimal or two decimal numbers.
Subtract numbers with up to fourdigits using the column method.

Concrete and visual representations

My 0 to 5 Decimal Number Line
 13
$=39$
What temperature would it be if it was $15^{\circ} \mathrm{C}$ cooler?

$=434$ Four hundred
and thirty four our hundred
and thirty fou

Number Fluency

Count back in ones, tens and hundreds maintaining fluency through regular practise Count back in multiples of 4, 8 50 and 100.
Find 10 or 100 less than a given number with up to 3 -digits. Mentally subtract ones from HTO, tens from HTO and tens and hundreds from HTO. Perform mental calculations with two-digit or three-digit numbers.
Switch count between
hundreds, tens and ones e.g. $500,400,390,380,379,378$ Count back in multiples of $6,7,9$, 25 and 100. Find 1000 less than a given number. Perform mental calculations with three-digit. two-digit and one-digit numbers.
Check answers using the inverse operation: addition.
Count back through zero to negative numbers. Independently decide on a method of choice depending on the nature of the given numbers presented in a number sentence or within a problem.

Pupils should be able to use subtraction flexibly and in context. They should understand that subtraction is the inverse of addition.

End of year expectations

Year 5 Solve multi-step problems involving

 subtraction. Children should be able to select and justify their methods. Perform mental calculations with increasingly large numbers. Subtract numbers with more than four-digits.Using a formal written method, e.g. columnar subtraction, solve calculations Subtract numbers with up to three decimal places.
Children should be able to subtract more than two numbers including those with decimals and/or a different numb of digits.

Year 6

Solve multi-step problems involving subtraction. Children should be able to select and justify their methods. Subtract numbers with more than four-digits.
Perform mental calculations with increasingly complex steps.
Using a formal written method, e.g. columnar subtraction, solve calculation Subtract numbers with up to three decimal places.
Children should be able to subtract more than two numbers including those with decimals and/or a different number of digits.

Concrete and visual representations

Amina posts three large letters.
The postage costs the same for each letter.
She pays with a $£ 20$ note.
Her change is $£ 14.96$

What is the cost of posting one letter?

Number Fluency

Count backwards and forwards in steps of 10 from any given number up to $1,000,000$.
Count backwards in positive and negative whole numbers through zero.
Use knowledge of the inverse to complete subtraction and addition problems effectively.
Perform mental calculations involving increasingly high numbers by drawing on known number facts e.g. $12,462-2,300=10,162$.

Use rounding to estimate and check answers effectively.

Count backwards and forwards in steps of 10 and 100 from any given number up to 1,000,000.
Recognise and consider place value between millionths and millions. Perform mental calculations involving increasingly high numbers and increasingly complex steps. These may include mixed operational steps.
Round numbers to a specific degree of accuracy.
Count backwards in positive and negative whole numbers through zero.

Multiplication

Pupils should be able to multiply effectively, realise that numbers can be multiplied

 in any order and recognise any related division facts.
End of year expectations

Concrete and visual representations

Children should record arrays in their books which demonstrate repeated addition, multiplication and commutativity.

$$
2+2+2+2+2=10
$$

$$
\begin{aligned}
& 2+2+2+ \\
& 2 \times 5=10
\end{aligned}
$$

$5 \times 2=10$

Number Fluency

Count backwards and forwards in $2 s, 5 s$ and $10 s$. Children should be able to do this from any given multiple.
Remember and identify number patterns.

Double numbers and quantities.
Mastery learners should begin to practise their 2, 5 and 10x tables.

Know the 2, 5 and 10 multiplication tables and connect them with each other. Know a variety of ways to describe the x symbol (multiply, times, product). Use the knowledge of commutativity to support fluency and rapid recall. Perform written and mental calculations independently. Develop multiplicative reasoning.
Count from 0 in multiples of 2 , $5,10,20$ and 100.

Pupils should be able to multiply effectively, realise that numbers can be multiplied in any order and recognise any related division facts.

End of year expectations

Year 3
Solve two-step problems involving multiplication.

Calculate mathematical statements involving one- and two-digit numbers.

Develop reliable mental and formal written methods to solve problems.

Solve problems involving: missing numbers, scaling and simple algebra

Year 4

Rapidly and randomly recall all multiplication tables up to 12×12. Solve two-step problems involving multiplication.
Using a formal written method solve number sentences involving one- two-and three-digit numbers Multiply three numbers including x 0 and $x 1$.
Recognise factor pairs. Solve problems involving: the distributive law, scaling and simple algebra.

Concrete and visual representations

$6 \times 8=48$

Number Fluency

Count in multiples of 3,4,8 50 and 100 (from 0, forwards and backwards).
Know and rapidly recall the 1 , $2,3,4,5,8$ and $10 x$ tables in any order.
Connect the 2,4 and $8 x$ tables through doubling.
Use the knowledge of commutativity to support fluency and rapid recall
Multiply three integers successfully e.g. $3 \times 3 \times 4=$ 36
Count in multiples of $6,7,9,25$ and 1000 (from 0, forwards and backwards).
Rapidly and randomly recall all multiplication tables up to $12 x$ 12.

Derive multiplication facts with up to three digits e.g. $2 \times 3=6$ so $200 \times 3=600$.
Recognise factor pairs and use commutativity effectively.
Use the distributive law e.g. 39 $\times 7=30 \times 7+9 \times 7$ Simplify using known number facts e.g. $2 \times 6 \times 5=10 \times 6$

Pupils should be able to multiply effectively, realise that numbers can be multiplied

 in any order and recognise any related division facts.End of year expectations

Year 5
Solve two- and three-step problems involving multiplication.
Identify multiples, factors, factor pairs, common factors, prime numbers, prime factors, composite numbers, square numbers and cube numbers
Solve problems involving all of the above. Using a formal written method, solve number sentences involving one- two-three- and four- digit numbers. Multiply numbers by 10,100 and 1000. Using a formal written method, multiply decimals with up to two decimal places. Solve missing number problems and balance equations.
Scale numbers by fractions e.g. $5 / 8 \times 64$.

Year 6

Using a formal written method, multiply one- two- three- and fourdigit numbers by a two-digit number. Using a formal written method, multiply decimals with up to three decimal places.
Using a formal written method multiply one- and two-digit numbers by a number with up to three decimal places.
Solve two- and three-step problems involving multiplication.

Concrete and visual representations

A toy shop orders 11 boxes of marbles.
Each box contains 6 bags of marbles.
Each bag contains 45 marbles.

How many marbles does the shop order in total?

Recording expectations

Autumn Term
Spring Term

Rosa buys 9 bananas. Each banana cost 79p. How much do they cost altogether

Number Fluency

Count forwards and

backwards in steps of 10 from any given number up to 1,000,000.
Having memorised all times tables to 12×12, successfully complete long and short multiplication without error. Use knowledge of the inverse to complete multiplication and division problems effectively. Multiply numbers mentally by drawing on known facts.

Undertake mental calculations with increasingly large numbers.
Continue to use all multiplication tables up to $12 \times$ 12 to calculate mathematical statements in order to maintain fluency.

Use estimation to predict or check answers to evidence number fluency and contextual awareness.

Division

Pupils should be able to divide effectively and recognise any related multiplication facts.

End of year expectations

Concrete and visual representations

Year 1
Solve one-step problems involving division.
Answer questions using concrete objects and pictorial representations.
Understand division as grouping and sharing.

Year 2

Solve one-step practical problems involving division.
Use concrete objects and pictorial representations to divide.
Understand division as grouping. Find halves and then quarters.
Use arrays to support grouping and sharing.
Learn using a range of materials and contexts within which grouping and sharing can be used to divide.

eaually.
Spring Term
Photographs/ stickers/ illustrations grouping and sharing alongside relevant
number fact/s.
Children should record arrays in their books which demonstrate repeated subtraction and division.

10-2-2-2-2-2 = 0 (2 goes into 10, 5 times)

Photographs of practical materials which have been grouped and shared by the children. This may include whiteboard annotations to label groups and/or quantities. Children should draw sharing circles to share quantities

Recording and Progression

Summer Term
$12 \div 2=6$

Number Fluency

Count backwards and forwards in $2 s, 5 s$ and $10 s$. Children should be able to do this from any given multiple.
Remember and identify number patterns.

Find simple fractions of objects, number and quantities e.g. a half and a quarter.

Mastery learners should begin to relate division facts to their 2,5 and $10 x$ tables.

Count backwards and

forwards in 2s, 3s, 5s and 10s from any given number.
Know a variety of ways to describe the \div symbol (divide, share, goes into, how many times).
Connect $10 x$ and $5 x$ tables to the divisions on a clock face. Become fluent using division facts which relate to the 2,5 and $10 x$ tables.
Count backwards and forwards in 10s from any given number. Develop reasoning skills to solve division word problems.

Pupils should be able to divide effectively and recognise any related multiplication facts.

End of year expectations

Year 3

Solve two-step problems involving division.
Recognise, find and name $\frac{1}{4}$ and $\frac{1}{2}$ of an object, shape or quantity.

Develop reliable mental and formal written methods to solve division problems.
Solve problems involving: missing numbers, scaling and simple algebra.
Understand the link between
fractions and division.

Year 4

Become fluent in the formal written method of short division using a one-digit divisor. Solve two-step problems involving division in different contexts. This should include a smaller dividend by a larger divisor for a fraction answer Divide one-and two-digit numbers by 10 or 100, identify tenths and hundredths where appropriate. Solve problems involving: scaling and simple algebra.

Count in multiples of 3, 4, 8, 50 and 100 (from 0, forwards and backwards).
Know and recall the division facts that relate to the 1,
$2,3,4,5,8$ and $10 x$ tables in any order.
Use division facts to derive related division facts e.g. $6 \div 3$ $=2$ so $60 \div 30=20$.
Complete division statements using known values.
Connect $1 / 10$ to dividing by 10 . Count in tenths.
Count in multiples of 6, 7, 9, 25 and 1000 (from 0, forwards and backwards).
Rapidly recall all division facts related to multiplication tables up to 12×12.
Derive division facts with up to three digits e.g. $600 \div 3=200$ as $6 \div 3=2$.
Recognise factor pairs and use commutativity effectively during mental calculations.
Use place value and known facts to divide mentally, including dividing by 1 .

Pupils should be able to divide effectively and recognise any related multiplication

 facts.End of year expectations

Year 5

Solve two- and three-step problems involving division
Solve problems involving: multiples, factors, factor pairs, common factors, prime numbers, prime factors, composite numbers, square numbers and cube numbers.
Using the formal short division method, solve number sentences involving one- two-three- and four- digit numbers Using a formal written method, divide decimals with up to two decimal places. Solve problems involving division including scaling down.
Interpret answers that are not whole numbers e.g. identify remainders/fractions or express an answer as a decimal or round to a whole number

Year 6

Using a formal written method, divide one two- three- and four- digit numbers by a two-digit number
Using a formal written method, divide decimals with up to three decimal places. Using a formal written method, divide oneand two-digit numbers by a number with up to three decimal places. division including the contex measures.
Understand the relationship betweer fractions and division
Interpret answers that are not whole numbers e.g. identify remainders/fractions or express an answer as a decimal or round to a whole number

Concrete and visual representations

Adam is making booklets.

He has 2 packets of paper.
There are $\mathbf{5 0 0}$ sheets of paper in each packet.
How many complete booklets can Adam make from 2 packets of paper?

Number Fluency

Count backwards and forwards in steps of 10 from any given number up to $1,000,000$.
Having memorised all times tables to 12×12, successfully complete more difficult short division without error.
Use knowledge of the inverse to complete division and multiplication problems effectively
Divide increasingly large numbers mentally by drawing on known multiplication facts.
Count backwards using positive whole numbers through zero.
Divide whole and decimal numbers by 10,100 and 1000.

Undertake complex mental calculations with increasingly large numbers and mixed operations.
Continue to use all multiplication tables and division facts up to 12 $x 12$ to calculate mathematical statements in order to maintain fluency.
Use estimation to predict or check answers to evidence number fluency and contextual awareness.
Successfully complete more difficult short and long division questions without error.

